ETH zürich

Cloud chamber Experiment

Alain Fauquex, Fynn Hufler, Jonas Spiller, Lea Schüpke, Rudolf Casanova Rondoy, Silvan Wigger P+ Praktikum, ETH Zurich

Introduction

Goal: detect α - and β -particles and from that measure the activity and half-life of radioactive sources.

Method: Use a cloud chamber to make the trails of α - and β -particles visible to the human eye. From the amount of trails we count we can calculate the activity.

Half-life: The half-life of a radioactive material is the time it takes until half of it has decayed. This is described by an exponential decay: $N(t) = N_0 e^{-\lambda t}$. N_0 is the initial amount of radioactive material, N(t) is the amount after the time *t* and $e^{-\lambda t}$ describes the exponential decay.

α - and β -particles:

 α -particles consist of 2 protons and 2 neutrons and are identical to Helium nuclei. β -particles are electrons or positrons.

How a diffusion cloud chamber works

60

ontium

Stro

 α - and β -particles shoot through the alcohol and leave an lon-trail, which we can see as condensation after the atoms re-ionize.

The exponential curve for the amount of Sr-90 with respect to time. The activity of the source is the amount of decays per unit time.

Velocity spectrum inside chamber:

0.5

1.0

1.5 2.0

Velocity [$\frac{m}{s}$]

2.5 1e8

Data and Results

Decay trails inside the cloud chamber:

Decay trails inside the cloud chamber (with ⁹⁰Sr source):

Automated trail detection using AI:

